3 research outputs found

    A simple sinusoidal quadrature oscillator using a single active element

    Get PDF
    This study describes a simple design for a single active element sinusoidal oscillator with a quadrature signal. A current conveyor transconductance amplifier (CCTA), a single resistor, and two grounded capacitors are used in the first circuit. The second circuit is improved by using a current-controlled current conveyor transconductance amplifier (CCCCTA) and two grounded capacitors without a passive resistor, which means the grounded capacitor is suitably implemented for the IC fabrication. The oscillation condition and frequency of both circuits can be controlled using the same method that concurrently adjusts the DC bias current and the resistance as well as the oscillation frequency can be independently adjusted by capacitances. The CCTA is achieved by cascading the integrated circuits (IC) AD844 and LM13700, made by Analog Devices Corporation and Texas Instruments, respectively, which are available for commercial purchase. The sinusoidal quadrature signals in the time-domain and frequency-domain can be shown with computer simulations and the results of experiments. The Monte Carlo Analysis is also utilized to examine the oscillation frequency with the influence of passive element tolerance errors. The predicted oscillation frequency has a standard variation of about 20.04 kHz, with a maximum frequency of approximately 346.89 kHz and a minimum frequency of approximately 259.09 kHz. In addition, the mean and median frequencies are 296.10 and 293.98 kHz, respectively. The results of this study indicate that computer simulation and experiment are similar to a theoretical analysis, making them suiTable for use in the teaching of electrical and electronic engineerin

    A fully balanced first order high-pass filter

    Get PDF
    The topic of this article is the design of a fully balanced first-order high-pass filter and its two circuits. The first circuit is a fully balanced current-tunability first-order high-pass filter consisting of four NPN transistors and a single capacitor, which is a simple design and quite compact. The pole frequency can be adjusted with a bias current. The results of the first circuit shows the phase and gain responses, the phase and gain responses when adjusted with a bias current, the time-domain response, and the harmonic spectrum. However, this circuit found a flaw in the temperature that affects the pole frequency, and total harmonic distortion is relatively high. Therefore, the second circuit improves defects by the CAPRIO technique to reduce the total harmonic distortion, and the resistors in the circuit are added to the design to replace the resistance and the effect of temperature on the properties of the transistor. This circuit consists of four NPN transistors, four resistors, and a single capacitor. The resistors in this circuit can be adjusted to change the pole frequency and voltage gain. The results of the second circuit show the gain and phase responses of the proposed circuits, the phase and gain responses when adjusted to the value of the resistor, the phase and gain responses at various temperatures, as well as their time-domain responses and total harmonic signal distortion. The all-pass filter is also made using the filter introduced in the second circuit because of its voltage gain-adjustable property. So, if the suggested circuit is constructed in combination with a buffer circuit to make it feasible to function as an all-pass filter, the result will be an all-pass filter. In accordance with the results of this study, we have introduced a design for a high-pass filter to reduce total harmonic distortion and the effect of temperatur

    Design and practice of simple first-order all-pass filters using commercially available IC and their applications

    Get PDF
    First-order all-pass filter circuits, both non-inverting and inverting, could be the focus of this article, which could include the design and implementation of first-order all-pass filter circuits. Using a standard integrated circuit (IC): AD830, as well as a single resistor and a single capacitor, the proposed first-order all-pass filters could well be built. The AD830 is an integrated circuit (IC) manufactured by Analog Devices Corporation that is available for purchase. The pole frequency and phase response of the proposed all-pass filters could well be directly modified by attuning the resistor in the circuit. Aside from that, the output voltage has a low impedance, making it appropriate for use in voltage-mode circuits. In addition, the proposed first-order all-pass filter is used to design the multiphase sinusoidal oscillator, which serves as an example of an application wherein the oscillation condition can be adjusted without impacting the frequency. The gain and phase responses of the proposed all-pass filters, as well as their phase response adjustment, time-domain response, and total harmonic distortion of signals, are all shown via computer simulation using the PSPICE software, as well as their experimental results. For the proposed circuits, a statistical analysis is coupled with a Monte Carlo simulation to estimate the performance of the circuits. In accordance with the results of this study, a theoretical design suitable for developing a worksheet for teaching and learning in electrical and electronic engineering laboratories has already been develope
    corecore